10 Tools in My Teaching Day

Looking to stay productive? Wonder what tools are out there to keep organized? I’ve tried a lot of tools, apps, websites over the last few years; some I kept using and some I tossed away. Here are the 10 tools that I use on a regular basis in my teaching in a video blog format!! If video is not for you scroll below to read the transcript.

Don’t miss my next blog post. Subscribe for updates, lessons, ideas, and tips and get notified by email when they go live.

This was my first go at a video post and I would love to know what you think. Think I should keep doing it? Think I should stick to just text? Let me know in the comments below or send me an email. For real, I would love your feedback!!

Continue reading

My Favourite Desmos Feature

If you follow me you know Desmos is my go-to software for graphing and calculator functions with my students. I'm pretty excited to let you know that coming soon I'll release a 3 part video series on using Desmos in the classroom to enhance classroom discussions. To get started I wanted to share my favourite Desmos feature: The Moveable Point Watch the 1 min 44 second video: Can't see the video? Click here to see the post page. Sign Up below to get notified when the 3 part series goes live. You won't want to miss it!! p.s. Here are the activities seen in the video. The Great Collide Charge: Edited Sugar Sugar Pondering Percent Pentomino Puzzles Or You can also download the free Multi-Touch Book from iBooks to use on your iPad Beautiful Functions  

3 New Desmos Activities: Talkers & Drawers

Goals of the activity:

Students will:
  • Begin to recognize characteristics of linear, quadratic, or periodic functions.
  • Generate a need to use proper vocabulary around linear, quadratic, or periodic functions.

Specific recommendations:

  • The “talker” cannot use their hands and should keep them behind his/her back. This will help the student be careful and direct the language they choose to describe the graph.
  • The “drawer” cannot talk.
  • Set a time limit. Possibly 3-4 minutes for the “talker” to describe the graph to the “drawer” with the goal to reproduce the graph.
  • Consider having all the “drawers” reveal the graphs at the same time for dramatic effect.
There are three different versions of the activity based on topic
Links to the three activities:

What the student experiences:

Once students choose a role tell them “Talkers, your goal is describe the graph perfectly to the drawer. Drawers, your goal is to listen carefully and without talking try to match the talkers graph. You will have 3 to 4 minutes for each graph.
When the time is up, tell all the drawers to click the REVEAL button at the same time to see how close your sketch was.
 

What the teacher experiences:

While students are describing and sketching take time to listen to the words they use. Store these words for later in the class so you can link them to the proper names.
Example: 
You heard Jose Adem Chain say, “The pattern starts at 2 and goes up…” If most students are using the phrase “starts at..” We can introduce the term y-intercept.
Or on the periodic function version:
A student might say, “…it does that and then repeats 4 units later” You now have a gateway into introducing the period of the function.
After each round use the Teacher View to showcase some student graphs to the class.
Consider restricting the students to the current sketch and move from sketch to sketch as a class.
Last question.

The words generated on this slide will most likely be informal. As a class discuss the informal use of the word and then introduce the more formal words relating to the topic.
Inspired by Brian McBain and also the team at Desmos

Polygon Pile Up

When it comes to angles involving parallel lines, triangles, and other polygons I’ve always assumed my grade 9 applied students “get this”. I’ve felt that angles were an easy topic. I guess I thought this because most students seem pretty happy when solving angle problems and for the most part being doing pretty well on assessments. However, this year I noticed two inadequacies that I am trying to address.

  1. Most of my students didn’t actually know what an angle measurement of 65 degrees really means.
  2. They have a hard time determining what information is needed when solving multi-step angle problems. Lack of a good strategy.

Addressing #1

When having students determine angles in triangles almost all of them knew that all three angles should add to 180 degrees. The trouble came when I saw some answers like this (from more than one student). 

What bothered me was the location of the 40. I wondered why outside the triangle? I pressed this student for more info. I asked him to draw me any right triangle and label the three angles.

 

Hmmm…I asked him to point to one of the angles. He pointed to where he labeled the 85. What I found is that this student was mixing up length measurements with rotational measurements and he was not alone.

I found a great activity to hit this head on. Laser Challenge from Desmos worked wonders to get my students to understand and experience rotational measurements. Students have to enter values to rotate the laser and mirror to hit targets.

My students “felt” what 60 degrees is. Experiencing that rotation made all the difference to clear up what we were actually measuring. When second semester rolled around and my new crop of kids came in we started with this activity right away.

Addressing #2

Most of our students struggle with solving complex problems where they have to think of a strategy. Before I gave them something like this,

I wanted to them to experience what information would be useful to know first. I decided to turn the problem around and inside out.

I gave them this.

I wanted them to think backwards….just like we need to do sometimes when solving longer problems. On the “easy” side most filled in 3 angles in the quadrilateral. What was great was that prepared them to think what we could leave out for the harder one. This simpler diagram challenged my class to think, plan, and strategize!

It was great to do this before we introduced this puzzle Jim Roesch, Kristyn Wilson, and myself created:

[There is a video embedded here — Can’t see it? Click through to the post page]

Here is the puzzle

Click to download a PDF copy to print.

And to really challenge yourself or your students here is a blank one. Can you fill it in so it’s “hard” to determine that indicated angle? What is the least amount of info you can give to bring out the most amount of thinking? Share them out!