Fast Clapper

One of my favourite lessons to do with my grade 9 applied students is the Fast Clapper! I first saw it on Nathan Kraft’s virtual filing cabinet! My main goal here was to solve proportions through algebra.

We started class like this:

ME: Hey guys get ready…..I want you to clap as fast as you can……Ready…..Set……..GO!

Class: They clapped. Some students gave it their all….some not so much.

ME: Ok….That’s enough. Now let’s make a competition out of this! I want you to clap as fast as you can for 10 seconds….count how many claps you make! …Ready —– GO!

Class: This time all of them gave it their all!!

ME (after 1o seconds): STOP! Great job! Quick, write down how many claps you made in those 10 seconds. Who thinks they had the most.

James: I did….I had 37 claps

Josh: Nope, I’ve got that beat……48 claps.

Shylynn: I did 56

Class: Whoa!!

ME: OK….now find how many claps you made in 1 second!

They did this pretty easily and we went around the room again….still seeing Shylynn with the highest!

ME: Great job…..now watch this guy….

Hayden: Wow!!! that guy can clap

ME: I know….Let’s watch again. This time watch the video and try to see something you didn’t before.

We watched a few times. Each time students would notice something different. We noticed:

  • He closes his eyes
  • The record is 721 claps per minute — “I wonder if he’ll beat the record”
  • He clapped 58 or 60 times in the video
  • The video only showed the first few seconds

ME: Let’s take the suggestion to discover if he beats the record. Who thinks he’ll beat the record? Who thinks he’ll tie the record? Who thinks he won’t beat the record?
We took a vote and recorded it.
ME: In order to see if he beats the record we’ll need some of that info from the video…..but we better be exact. Why?
Janice: If we’re off by a clap in the first few seconds….it could be huge after a minute.
ME: Ok, let’s be exact.
Jake: We could pause the video on the last moment to see.

Screen Shot 2015-10-14 at 7.44.21 PM

Judy: He claps 63 times in 4.6 seconds.

ME: OK….go for it. Work together to see if he beats the record.

They got going and I needed to work with a few groups to discuss how to get started. “IF you could find how many claps in 1 second how could that help?”
After some time I stopped them and showed some students’ solutions

IMG_1193  IMG_1195

We then showed the rest of the minute!

We moved into re-solving the problem using ratios and proportions. I went through slides to show how to set up the proportion and how to solve it with algebra.

I’m a strong believer in letting the students struggle and persevere through problems. I want them to use their prior knowledge to solve the problem in any way they can, any way that makes sense to them. I can see their understanding when they have to explain their thinking to me and the class. After they solve the problem in their way…..I take what they have done use it to explain the “math teacher” way.

Today one of my grade 10 academic students was solving a problem and I could see some good thinking on the page….but he also wrote: I don’t know how to start this. I asked him right there why he wrote that when he had almost a full answer on his page. He said “I know that’s not the way you want me to solve it!” I jumped on that quick and said….”I want you to solve problems that make sense to YOU. Just show me your thinking” He went on to solve the problem with in a great way.

We need to build our students confidence up. We need to promote and value their solutions instead of forcing our solutions on them.

So, back to Fast Clapper: I used their solutions to help explain why the math teacher way also makes sense. Here is a silent version of the slides I used.

We moved on from here to solve Dan Meyer’s Sugar Packets problem and the Smart Car Smash to practice solving proportions with algebra.

And then used a Knowledgehook gameshow to practice some more…go ahead, give it a shot.

Sneak in Solving Linear Equations — SolveMe Mobiles

As part of my day to day warm up series in my grade 9 applied class we are solving  Solve Me Mobiles. Like what VisualPatterns does for my students and learning and discovering linear relations — Solve Me Mobiles is having students solve equations without really knowing it.

Puzzles are presented with minimal distraction and with clarity. Puzzles require no explanation. Students know exactly what its asking for.

Today we started on Puzzle 12 and completed up to puzzle 14 (first 15 minutes of class).

Screen Shot 2015-10-06 at 2.58.43 PM

https://solveme.edc.org/?mobiles=-12

As students explain their strategies to the class I translate their words into small equations…. All with the goal in mind of sneaking in equation solving.
IMG_3840

Jill easily solved a 1-step equation on the left side…and then used pictures to help solve the 2-step equation on the right.

Onto Puzzle 13,

Screen Shot 2015-10-06 at 2.57.06 PM

https://solveme.edc.org/?mobiles=-13

After Carl explained his strategy I used the opportunity to discuss opposite operations.

IMG_3841

Screen Shot 2015-10-06 at 2.31.13 PM

https://solveme.edc.org/?mobiles=-14

Here’s what one student wrote to solve this one…

IMG_3842

And we translated that answer into this one.

IMG_3844

All this took about 15 minutes of class time….and then we were onto something else!

Work it in! —- SolveMe Mobiles

Other Warm Up Posts:

Lollipop Lollipop oh la la Lollipop! — & Rates of Change

Last year on twitter I saw that Alex Overwijk and Janice Bernstein with their grade 12 advanced functions classes did this lollipop activity!

I knew that I wanted to give this a try for this semester! What I especially love about this activity other than students experiencing rates of change is that this is an activity that can span multi-grades!

Here is what we did,

Generating Curiosity

I found this video on YouTube and asked the class to think of great questions we could ask about what we see!

FullSizeRender-1Great questions from the kids and we all agreed to look at

  • How does the sucking time affect the radius, circumference, volume, and surface area?
  • How long will it take until the lollipop is all gone?

Let’s investigate those relationships starting with the easy to measure (circumference) and also estimate how long it will take until the lollipop is no more!

We had guesses : ranging from 10 minutes through to 35 minutes.

Gathering Data

I handed out one lollipop per pair of students, along with some dental floss for measuring circumference. We set our timer for 30 seconds and began sucking and capturing data!
We recorded the circumference every 30 seconds up to 7 minutes like Al’s and Janice’s instruct in their lesson Plan.
FullSizeRender
They also have a great handout for tracking the circumference over the 30 second intervals. Screen Shot 2015-09-18 at 2.22.08 PM

Analyzing the Data

So we first looked at the Time vs. Circumference and Time vs. Radius relationship
Linear - Lollipop

Screen Shot 2015-09-18 at 2.27.24 PM
We discussed its linearity and why. Students predicted with more accuracy when their lollipop would run out.
Up to this point this task is great for grades 7, 8, 9, or 10!! (Just edit the file to exclude the average and instantaneous rates of change).

  • Grade 7 & 8: Practice plotting points and reading/interpreting graphs.
  • Grade 9 & 10: Find lines of best fit and first differences.

We found the average rate of change for each 30 second interval and discussed what this meant. We used the last column to talk about narrowing the interval down to estimate the instantaneous rate of change, and noticed that it’s about the same for all values. Why does this make sense???

7Yar2VXD

 

We moved on to looking at Time vs. Volume and Time vs. Surface Area

Screen Shot 2015-09-20 at 9.33.23 AM

Great talks around how Volume and Surface aren’t deceasing at a constant rate! It changes! Students can see these changes and see in their tables where the volume is changing the fastest.

Overall a great intro activity to get students thinking about narrowing intervals to approximate instantaneous rates of change.

Next up: We’ll relate what we did here with the tables to the graphical interpretation of rates of change (secant and tangent lines) and then on to the algebraic!

Screen Shot 2015-09-20 at 6.23.18 PM

 

R2D2 – Pear Deck/Desmos Mash Up!

School is just right around the corner for us up here in Ontario and I can’t stop thinking about that first day. As for my grade 9 applied class’ first day I have ran the R2D2 problem in the past with great success.
Now, over the summer I’ve seen great improvements in Pear Deck and wanted to get into it! Also Desmos has been busy and released Activity Builder!! So let’s mash these two apps up with some R2D2!!

So here is the R2D2 problem presented with Pear Deck and an extensions with Desmos….

Act 1: The video

and this is what Pear Deck will show after you insert the video…..love how the video will be displayed on the projector and not on each individual device!!!

IMG_1418

I like using Pear Deck here for asking for wonderings and notices because it allows students who normally won’t shout out answers to have a voice in the room. Students get to input their responses and the teacher can show them on the projector.

Screen Shot 2015-08-20 at 10.54.42 AM

For generating estimates I absolutely love how they put our Too high and Too low guess on a number line…..it gives us the visual of where our actual estimates will lie.

IMG_1417

Screen Shot 2015-08-20 at 10.54.11 AM

Act 2: Gathering the Info

In the new version here I get students to draw their estimates of the dimensions of both the board and the post it note…..this pushes them into drawing diagrams.

IMG_1419

 

Revealing the dimensions….

 

Students are ready to solve….

 

IMG_1421

Act 3: Revealing The answer

The Extension: How many rectangles can we make that have an area of 609 post it notes?
To extend I want students draw out different rectangles and label their dimensions! They can use Pear Deck’s white board!

IMG_1422

But then they can enter them into Desmos through a pre-made activity I created in Activity Builder. (the Pear Deck file links to the Desmos activity).

IMG_1423
For each rectangle the student can come up with they find the perimeter and plot the length vs. perimeter in the Desmos graph. The teacher on the projector can use the Overlay function and show all the different rectangles students are coming up with…essentially showing the pattern that emerges! Using the pattern students can read off the minimum perimeter!

 

Screen Shot 2015-08-20 at 11.11.50 AM

 

If you have a Pear Deck account Grab and download the file below!

[aio_button align=”center” animation=”none” color=”blue” size=”medium” icon=”star” text=”Pear Deck File” relationship=”dofollow” url=”https://drive.google.com/file/d/0B9g0jeaVwshveDVhWktzdTRudE0/view?usp=sharing”]

Link to the Desmos Activity